Недостатки люминесцентных ламп презентация. Преимущества и недостатки люминесцентных ламп. Люминесцентные светильники - принцип работы

Основные преимущества люминесцентных ламп перед лампами накаливания. Параметры и виды люминесцентных ламп, правила их утилизации и особенности маркировки. Запуск и подключение, область применения. История и принцип работы. Причины выхода из строя.





Чтобы скачать работу бесплатно нужно вступить в нашу группу ВКонтакте . Просто кликните по кнопке ниже. Кстати, в нашей группе мы бесплатно помогаем с написанием учебных работ.


Через несколько секунд после проверки подписки появится ссылка на продолжение загрузки работы.
Бесплатная оценка
Повысить оригинальность данной работы. Обход Антиплагиата.

РЕФ-Мастер - уникальная программа для самостоятельного написания рефератов, курсовых, контрольных и дипломных работ. При помощи РЕФ-Мастера можно легко и быстро сделать оригинальный реферат, контрольную или курсовую на базе готовой работы - Люминесцентные лампы.
Основные инструменты, используемые профессиональными рефератными агентствами, теперь в распоряжении пользователей реф.рф абсолютно бесплатно!

Как правильно написать введение?

Секреты идеального введения курсовой работы (а также реферата и диплома) от профессиональных авторов крупнейших рефератных агентств России. Узнайте, как правильно сформулировать актуальность темы работы, определить цели и задачи, указать предмет, объект и методы исследования, а также теоретическую, нормативно-правовую и практическую базу Вашей работы.


Секреты идеального заключения дипломной и курсовой работы от профессиональных авторов крупнейших рефератных агентств России. Узнайте, как правильно сформулировать выводы о проделанной работы и составить рекомендации по совершенствованию изучаемого вопроса.



(курсовую, диплом или отчёт) без рисков, напрямую у автора.

Перейти в список рефератов, курсовых, контрольных и дипломов по
дисциплине

За продолжительный период эксплуатации были хорошо изучены преимущества и недостатки люминесцентных ламп, что позволило наиболее рационально использовать их в осветительных приборах. В настоящее время большую популярность завоевывают энергосберегающие устройства, нашедшие широкое применение в бытовых условиях.

Общие сведения

Люминесцентные лампы относятся к категории газоразрядных источников света низкого давления. В газовой среде возникает разряд электрического тока, вызывающий появление ультрафиолетового излучения, невидимого для обычного зрения. Попадая на стенки колбы с люминофорным покрытием, оно превращается в видимый световой поток.

Сама лампочка изготовлена в виде цилиндрической стеклянной трубки, внутри которой находится инертный газ и пары ртути. Торцы герметично закрыты крышками, с впаянными в них электродами. При подключении тока они создают электрический разряд, после чего запускаются все процессы, в конечном итоге вызывающие свечение лампы.

Все люминесцентные лампы обеспечивают создание мягкого равномерного светового потока. Он трудно поддается управлению и регулировке в связи с большой площадью излучающей поверхности. Форма трубок может быть линейная, кольцевая, U-образная, круглая. Собственные конфигурации предусмотрены для . Диаметр стеклянной колбы отображается в количестве восьмых частей дюйма. Например, маркировка Т5 соответствует 5/8 дюйма или около 16 мм. В каталогах и международных стандартах эта величина указывается только в миллиметрах.

Сегодня выпускается свыше 100 видов ламп общего назначения с собственными типоразмерами. Наибольшее распространение получили устройства мощностью 15, 20, 30 ватт под напряжение 127 вольт и 40, 80, 125 Вт - для 220 В. Срок эксплуатации в среднем составляет примерно 10 тысяч часов.

Все известные недостатки и преимущества люминесцентных ламп, их параметры и технические характеристики напрямую связаны с температурой окружающей среды. Наиболее подходящей температурой для ртутных паров считается 40 градусов, при которых достигается максимальная световая отдача.

Технические характеристики

Свойства каждой лампы отражены в ее параметрах, указанных производителями в или на упаковке. Обычно такой информации вполне хватает, чтобы сделать правильный выбор.

Прежде всего, следует обращать внимание на питающее напряжение. Для российских сетей предусмотрена маркировка 220-240V/50Hz, что полностью соответствует общепринятым параметрам. Точно так же на лампочке указывается значение потребляемой мощности. Иногда на упаковке приводится сравнение с лампой накаливания при одинаковом энергопотреблении.

Высокое качество известных производителей определяет преимущества люминесцентных ламп по данному показателю в 4-5 раз. Довольно часто встречается обозначение типа 16 Вт = 80 Вт. Это значит, что при одинаковом световом потоке люминесцентная лампа потребит всего 16 ватт, а обычная лампочка накаливания - целых 80 ватт.

Некоторые достоинства и недостатки определяются световым потоком, обозначающим величину мощности света с общем потоке излучения. Эта величина устанавливается лабораторным путем, измеряется в люменах (лм) и наносится на упаковку или отражается в паспорте.

Большое значение имеет показатель , показывающей, насколько свечение приближено к естественному освещению. Этот параметр измеряется в Кельвинах и рассматривается в трех диапазонах:

  • Теплый белый диапазон - 2700-3200 К. Такие люминесцентные лампы производят мягкое белое световое излучение, с небольшим оттенком желтоватого цвета и лучше всего подходят для жилых помещений.
  • Холодный белый цвет находится в диапазоне 4000-4200 К. Лампы с такими показателями используются для освещения рабочих помещений, офисов и общественных зданий.
  • Диапазон дневного белого цвета - 6200-6500 К. Применяется в системах освещения улиц, нежилых помещений, театральных сцен и других аналогичных объектов. Отличается резким белым светом ярко выраженного холодного тона.

Выбирая лампу следует обязательно учитывать цветовую температуру. В случае замены изделие должно обладать такими же характеристиками.

Особенности эксплуатации

Рассматривая плюсы и минусы ламп дневного света, следует подробно остановиться на особенностях их эксплуатации, существенно отличающихся от обычных .

Поэтому, используя люминесцентные лампы, нельзя забывать о следующих обязательных правилах:

  • Эти источники света плохо переносят частые включения и выключения. Подобная ситуация связана с использованием в схеме и . При каждом пуске происходит испарение электродов, в результате, концы трубок начинают чернеть. Высокое потребление тока пускорегулирующей аппаратурой во время пусков, вызывает повышенные нагрузки и преждевременный выход ее из строя. Поэтому маломощные лампы, до 15 Вт, рекомендуется включать и выключать один раз в день. Если же без этого никак не обойтись, нужно купить более дорогие лампы с системой плавного старта, которые будут работать без каких-либо проблем.
  • Повышенная чувствительность ламп дневного света к перепадам напряжения, особенно в сторону понижения. Пусковое устройство начинает еще больше потреблять тока, иначе пуск лампы просто не состоится. В результате, частое низкое напряжение вызывает преждевременный износ ПРА.
  • Люминесцентные лампы требуют предельно аккуратного обращения. Прежде всего это связано с парами ртути, содержащимися внутри колбы. Если ее , то вредные вещества попадут в окружающую среду. Поэтому во время транспортировки или при хранении, светильники должны находиться в надежном устойчивом положении. Замена лампы осуществляется в перчатках, поскольку следы жира на колбе при нагреве могут привести к взрыву.
  • Необходимость контроля продолжительности работы лампочек. С этой целью дата ввода в эксплуатацию заносится в специальный журнал. Это делается в связи с ухудшением качества светового потока с течением времени. В реальности данное правило почти не соблюдается и замена лампы производится только после того, как она выйдет из строя.
  • Для люминесцентных ламп рекомендуется использовать светильники открытого типа. Во время работы некоторые из них сильно нагреваются, а закрытие приборы освещения не обеспечивают нужной вентиляции. Кроме того, матовая поверхность плафона задерживает световой поток и пропускает его лишь частично. Открытые светильники вообще не нагреваются и создают максимальную яркость при тех же энергозатратах.
  • Экономия электроэнергии, которую планируется получить, во многом зависит от производителя ламп дневного света. Дешевые устройства изготовлены из таких же материалов, поэтому качество света и срок службы оставляют желать лучшего. Лучше приобретать изделия известных брендов, максимально приближенных к заявленным техническим характеристикам.

Плюсы и минусы

Рассмотрев устройство и работу люминесцентных ламп, правила их эксплуатации, их плюсы и минусы, можно сделать вполне определенные выводы об положительных и отрицательных качествах.

Несомненными достоинствами этих изделий являются:

  • Повышенная экономичность по сравнению с традиционными лампочками накаливания. Коэффициент полезного действия выше в несколько раз. Серьезным конкурентом могут выступить светодиодные лампы, но их высокая стоимость тормозит широкое применение.
  • Высокая световая отдача, позволяющая осветить большие площади в помещениях и на прилегающих территориях.
  • Устройства с люминофором отличаются продолжительным сроком эксплуатации. У некоторых модификаций он составляет десятки тысяч часов при условии соблюдения всех правил и отсутствия частых включений и выключений. В них нет нитей накаливания, которые могут быстро перегореть.
  • Большинство моделей люминесцентных ламп не подвержены сильному нагреву и могут использоваться в светильниках, где максимально допустимая температура ограничена жесткими рамками.
  • Свет рассеивается с большой площади поверхности лампы и равномерно распределяется по всему помещению.

Отрицательные качества и недостатки проявляются в следующем:

  • Ртуть, содержащаяся в колбе, является опасным веществом, поэтому лампам требуется специальная .
  • С течением времени свойства люминофора теряются и его эффективность падает. В результате, снижается не только световая отдача, но и КПД.
  • Необходимость использования пускорегулирующей аппаратуры, без которой работа лампы невозможна.

Существуют и другие недостатки, но они не оказывают заметного влияния на использование люминесцентных ламп.

Выход из строя

1. Распыление электродов

При периодической кратковременной работе (< 3 ч)

При частых холодных стартах

2. Отказ пусковой аппаратуры

Конструктивные неисправности (дефекты)

Нестандартная рабочая среда

Истечение времени работы

Перегорание вследствие распыления электродов

Распыление люминофора

Поглощение паров ртути

Достоинства

Эффективность

КПД = 22% (у ламп накаливания 5-10%)

ψ = 16 – 100 лм/Вт (в среднем 50-67 лм/Вт)

Долговечность

В 10-20 раз дольше, в сравнении с лампами накаливания

Более равномерная светимость

Более низкое тепловыделение (65-75%)

Снижение размеров, цены и мощности кондиционирования

Недостатки

Проблемы со здоровьем

Возможное отравление парами ртути

Проблемы у людей с повышенной чувствительность к УФ, эпилептиков, подверженных синдрому хронической усталости

Головные боли и усталость

Необходимость использования пусковой аппаратуры

Увеличение цены

Возможен низкочастотный гул

Сниженный коэффициент мощности

Радиочастотное зашумление

Искажение параметров электроэнергии

Зависимость от параметров окружающей среды

Мерцание и возможный стробоскопический эффект

Трудность повторного использования и утилизации

Светодиод - это полупроводниковый прибор, преобразующий электрический ток непосредственно в световое излучение. по-английски светодиод называется light emitting diode, или LED.

Конструкция светодиода

LED состоит из полупроводникового кристалла на подложке, корпуса с контактными выводами и оптической системы. Современные светодиоды мало похожи на первые корпусные светодиоды, применявшиеся для индикации.

Конструкция светодиода

Свечение возникает при рекомбинации электронов и дырок в области p-n- перехода. Значит, прежде всего нужен p-n-переход, то есть контакт двух полупроводников с разными типами проводимости. Для этого приконтактные слои полупроводникового кристалла легируют разными примесями: по одну сторону акцепторными, по другую - донорскими. Однако одного р-п-перехода в кристалле недостаточно, и приходится изготавливать многослойные полупроводниковые структуры, так называемые гетероструктуры, за изучение которых российский физик академик Жорес Алферов получил Нобелевскую премию 2000 года.

Конструкция светодиода

В отличие от лампы накаливания или люминесцентной лампы, электрический ток преобразуется непосредственно в световое излучение, и теоретически это можно сделать почти без потерь. Светодиод (при должном теплоотводе) мало нагревается, что делает его незаменимым для некоторых приложений. Далее, светодиод излучает в узкой части спектра, его цвет чист, что особенно ценят дизайнеры, а УФ- и ИК-излучения, как правило, отсутствуют. Светодиод механически прочен и исключительно надежен, его срок службы может достигать 100 тысяч часов, что почти в 100 раз больше, чем у лампочки накаливания, и в 5 - 10 раз больше, чем у люминесцентной лампы. Наконец, светодиод - низковольтный электроприбор, а стало быть, безопасный.

Основные характеристики

Материал: соединения Кремния

Потребляет от 2 до 4 В постоянного напряжения

КПД: 93-94%

Световой поток, лм: от 7 до 1200

t г.ср. = 100 000 ч.

Достоинства

Сверхдолгий срок службы

Низкое энергопотребление

Работа при низких температурах

Стойкость к механическим воздействиям

Высокая светоотдача

Экологическая и пожарная безопасность

Недостатки

Большая стоимость

При подключении светодиода необходимо соблюдать полярность

Светодиодные лампы

Сравнение люминесцентных ламп и светодиодных ламп

Технические

Светодиодная лампа

Люминесцентная лампа

характеристики

Источник света

Светодиоды SMD(3528)

Люминофор

Производитель

светодиодов Semileds

(Тайвань) 180 штук

Холодный белый

Холодный белый

Цветовая температура

Рабочее напряжении

Рабочая частота

Мощность

Угол свечения

Оптический поликарбанат

Гарантия

Срок службы

100000 часов

1. Электрическое освещение

САЭЭС

нарушилась герметичность, и если постоянно

подвергаться пагубному воздействию паров ртути, то они

будут накапливаться в организме человека, нанося вред

здоровью. Требует специальной утилизации.

Недостатки

Более высокая

Зависимость световых характеристик от температуры

окружающей среды

- значительное снижение светового потока к концу срока службы

- пульсации светового потока

- мерцание ламп, что повышает утомляемость

- относительно долгий запуск

- большее потребление энергии

- дроссель может издавать низкочастотный неприятный гул.

Определение. Люминесце нтная ла мпа - газоразрядный источник света, в котором электрический разряд в парах ртути создаёт ультрафиолетовое излучение, которое преобразуется в видимый свет с помощью люминофора - например, смеси галофосфата кальция с другими элементами.

Световая отдача люминесцентной лампы в несколько раз больше, чем у ламп накаливания аналогичной мощности. Срок службы люминесцентных ламп около 5 лет при условии ограничения числа включений до 2000, то есть не больше 5 включений в день в течение гарантийного срока 2 года.

Разновидности ламп низкого давления. Люминесцентная лампа, применяемая в потолочных или специализированных светильников. Обычно используют в паре.

Разновидности ламп высокого давления. ДРЛ (Дуговая Ртутная Люминесцентная). Применяется для общего освещения цехов, улиц, промышленных предприятий и других объектов, не предъявляющих высоких требований к качеству цветопередачи и помещений без постоянного пребывания людей.

Разновидности ламп высокого давления. Лампы ДРИ (Дуговая Ртутная с Излучающими добавками) конструктивно схожа с ДРЛ, однако в её горелку дополнительно вводятся строго дозированные порции специальных добавок - галогенидов некоторых металлов (натрия, таллия, индия и др.), за счёт чего значительно увеличивается световая отдача (порядка 70 - 95 лм/Вт и выше) при достаточно хорошей цветности излучения. Лампы имеют колбы эллипсоидной и цилиндрической формы, внутри которой размещается кварцевая или керамическая горелка. Срок службы - до 8 - 10 тыс. ч.

Разновидности ламп высокого давления. Лампы ДРШ (Дуговые Ртутные Шаровые) представляют собой дуговые ртутные лампы сверхвысокого давления с естественным охлаждением. Имеют шарообразную форму и дают сильное ультрафиолетовое излучение.

Разновидности. ДНАТ низкого давления, 35 Вт. ДНАТ высокого давления, 100 Вт. На триевая газоразря дная ла мпа (НЛ). лампы дают яркий оранжево-жёлтый свет, что вызывает при освещении ими неудовлетворительное качество цветопередачи. Применяются в основном для уличного освещения, утилитарного, архитектурного и декоративного.

Преимущества. Значительно большая светоотдача (люминесцентная лампа 20 Вт даёт освещённость как лампа накаливания на 100 Вт) и более высокий КПД; разнообразие оттенков света; рассеянный свет; длительный срок службы (2000- 20 000 часов в отличие от 1000 у ламп накаливания), при условии обеспечения достаточного качества электропитания, балласта и соблюдения ограничений по числу включений и выключений (поэтому их не рекомендуется применять в местах общего пользования с автоматическими включателями с датчиками движения).

Недостатки. Химическая опасность (ЛЛ содержат ртуть в количестве от 10 мг до 1 г); Неравномерный, линейчатый спектр, неприятный для глаз и вызывающий искажения цвета освещённых предметов (существуют лампы с люминофором спектра, близкого к сплошному, но имеющие меньшую светоотдачу); Деградация люминофора со временем приводит к изменению спектра, уменьшению светоотдачи и как следствие понижению КПД ЛЛ; Наличие дополнительного приспособления для пуска лампы - пускорегулирующего аппарата (громоздкий шумный дроссель с ненадёжным стартером или же дорогой ЭПРА); Очень низкий коэффициент мощности ламп.

Люминесцентные светильники - принцип работы

Люминесцентные светильники представляют собой самый распространенный тип светильников для освещения административных зданий. В последнее время они находят применение и для освещения жилых зданий. При светильники с люминесцентными лампами часто рассматриваются как основной тип используемых светильников. Источником света в таких светильниках является, которая относится к широкому классу газоразрядных ламп, использующих свойство некоторых газов и паров металлов светиться в электрическом поле . Люминесцентная лампа представляет собой длинную тонкую стеклянную трубку, покрытую внутри люминофором. Трубка заполнена инертным газом, в который добавлены пары ртути. По краям трубки расположены катоды, представляющие собой вольфрамовые спирали (накалы) покрытые слоем оксида бария. Спирали подключены к штырькам, выходящим наружу и служащим для подключения лампы.

Люминесцентные лампы для малогабаритных светильников могут быть выполнены в виде кольца, спирали или иметь другую форму, позволяющую уменьшить габариты лампы.

Существует большое количество различных схем включения люминесцентных ламп. Рассмотрим принцип работы лампы на примере простейшей схемы со стартером и дросселем, показанной на Рис. 1. Дроссель и стартер представляют собой электромагнитную пускорегулирующую аппаратуру (ПРА).

Рис.1 Запуск люминесцентной лампы с использованием электромагнитного ПРА

При подаче напряжения на вход схемы практически все напряжение прикладывается к стартеру, представляющему собой неоновую лампочку, у которой электроды изготовлены из биметаллических пластин. Между пластинами неоновой лампочки возникает тлеющий разряд, разогревающий пластины. Под действием температуры пластины изгибаются и замыкаются между собой. Биметаллические пластины изготавливают путем соединения двух пластин из разнородных металлов, имеющих разный коэффициент линейного температурного расширения, вследствие чего нагрев приводит к изгибу таких соединенных пластин. После замыкания пластин оба накала люминесцентной лампы разогреваются проходящим по ним током. А пластины неоновой лампочки стартера остывают и размыкаются. В дросселе возникает переходной процесс, вызванный резким уменьшением проходящего по нему тока: между накалами люминесцентной лампы появляется импульс напряжения, значительно превышающий по величине напряжение питающей сети. В лампе возникает газовый разряд, сопровождающийся свечением, который уже поддерживается только электрическим полем между катодами. Дроссель ограничивает ток через лампу. Конденсатор С1 необходим для повышения коэффициента мощности светильника. Конденсатор С2 служит для подавления высокочастотных помех.

Выпускается большая номенклатура различных стартеров в зависимости от мощности ламп. В светильниках часто две люминесцентные лампы включают последовательно. Стартеры для такого включения имеют другое напряжение включения, чем используемые для одной лампы.

Разряд в лампе сопровождается ультрафиолетовым излучением, длина волны которого лежит за пределами видимого глазом света (примерно 254 нм). Это излучение возбуждает в люминофоре свечение с длинами волн видимого света. Ультрафиолетовое излучение практически полностью задерживается стенками стеклянной трубки.

Светильники с электромагнитными ПРА имеют ряд недостатков: дроссели, входящие в состав ПРА, сильно греются и гудят; низкий коэффициент мощности - доходящий до 0,5; светильники плохо включаются при пониженном, даже на 10%, напряжении сети; свечение ламп сопровождается мерцанием с частотой сети, что приводит к утомляемости глаз; возможно возникновение стробоскопического эффекта - зрительной иллюзии неподвижности вращающегося предмета.

Электромагнитные ПРА постепенно вытесняются электронными ПРА (ЭПРА), в которых все функции по запуску лампы и регулированию режимом ее работы выполняет электронная схема. В электронном ПРА напряжение с частотой 50 Гц преобразуется в напряжение с частотой в несколько десятков кГц. Для ограничения тока в лампе здесь также имеется дроссель, но на повышенной частоте потери мощности в нем пренебрежимо малы. Электронные ПРА позволяют уменьшить мерцание ламп и устранить стробоскопический эффект, повысить коэффициент мощности до 0,9 - 0,95, осуществлять плавное зажигание ламп и значительно увеличить продолжительность их работы. Специальные электронные ПРА позволяют диммировать люминесцентные светильники, изменяя их световой поток в широких пределах. Для таких ЭПРА вместо выключателя устанавливается специальный диммер, рассчитанный для работы с данным типом ЭПРА. Экономия электроэнергии при переходе от электромагнитных ПРА к электронным составляет 20 - 30%, а при использовании диммируемых светильников значительно больше. Поэтому при проектировании освещения чаще всего подбирают светильники именно с электронным ПРА. А компактные люминесцентные лампы (часто называемые энергосберегающими) для малогабаритных светильников содержат схему электронного ПРА внутри корпуса лампы.

Мерцание ламп и стробоскопический эффект в светильниках с электромагнитным ПРА можно существенно снизить при освещении больших помещений, в которых значительное количество светильников равномерно распределено по трем фазам электросети. При этом спад светового потока в светильниках одной фазы компенсируется повышением светового потока в других фазах. Подбирая светильники при проектировании освещения необходимо учитывать, что светильники с электронным ПРА имеют несравнимое преимущество, если в помещении предполагается установить небольшое количество светильников. Когда нет возможности распределить их равномерно по всем трем фазам электрической сети.

К (Все статьи сайта)

Добавить сайт в закладки

  1. Высокая эффективность: КПД - 20-25% (у ламп накаливания около 7%) и светоотдача в 10 раз больше.
  2. Длительный срок службы – 15000-20000 ч. (у ламп накаливания - 1000 ч., сильно зависит от напряжения) питания.

Имеют ЛЛ и некоторые недостатки:

  1. Как правило, все разрядные лампы для нормальной работы требуют включения в сеть совместно с балластом. Балласт, он же пускорегулирующий аппарат (ПРА), -- электротехническое устройство, обеспечивающее режимы зажигания и нормальной работы ЛЛ.
  2. Зависимость устойчивой работы и зажигания лампы от температуры окружающей среды (допустимый диапазон 55 о C, оптимальной считается 20 о C). Хотя этот диапазон постоянно расширяется с появлением ламп нового поколения и использованием электронных балластов (ЭПРА).

Остановимся подробнее на достоинствах и недостатках ЛЛ. Известно, что оптическое излучение (ультрафиолетовое, видимое, инфракрасное) оказывает на человека (его эндокринную, вегетативную, нервную системы и весь организм в целом) значительное физиологическое и психологическое воздействие, в основном благотворное.

Дневной свет -- самый полезный. Он влияет на многие жизненные процессы, обмен веществ в организме, физическое развитие и здоровье. Но активная деятельность человека продолжается и тогда, когда солнце скрывается за горизонты. На смену дневному свету приходит искусственное освещение. Долгие годы для искусственного освещения жилья использовались (и используются) только лампы накаливания – теплый источник света, спектр которого отличается от дневного преобладанием желтого и красного излучения и полным отсутствием ультрафиолета.

Кроме того, лампы накаливания, как уже упоминалось, неэффективны, их коэффициет полезного действия - 6-8%, а срок службы очень мал – не более 1000 ч. Высокий технический уровень освещения с этими лампами невозможен.

Вот почему вполне закономерным оказалось появление ЛЛ – разрядного источника света, имеющего 5-10 раз большую световую отдачу, чем лампы накаливания, и в 8-15 раз больший срок службы. Преодолев различные технические трудности, ученые и инженеры создали специальные ЛЛ для жилья – компактные, практически полностью копирующие привычный внешний вид и размеры ламп накаливания и сочетающие при этом ее достоинства (комфортную цветопередачу, простоту обслуживания) с экономичностью стандартных ЛЛ.

В силу своих физических особенностей ЛЛ имеют еще одно очень важное преимущество перед лампами накаливания: возможность создавать свет различного спектрального состава – теплый, естественный, белый, дневной, что может существенно обогатить цветовую палитру домашней обстановки. Не случайно существуют специальные рекомендации по выбору типа ЛЛ (цветности света) для различных областей применения. Наличие контролируемого ультрафиолета в специальных осветительно-облучательных ЛЛ позволяет решить проблему профилактики «светового голодания» для городских жителей, проводящих до 80% времени в закрытых помещениях.

Так, лампы, выпускаемые фирмой OSRAM ЛЛ типа BIOLUX, спектр излучения которых приближен к солнечному и насыщен строго дозированным ближним ультрафиолетом, успешно используются одновременно и для освещения, и для облучения жилых, административных, школьных помещений, особенно при недостаточности естественного света.

Выпускаются также специальные агарные ЛЛ типа CLEO (PHILIPS), предназначенные для принятия «солнечных» ванн в помещении и для других косметических целей. При использовании этих ламп следует помнить, что для обеспечения безопасности необходимо строго соблюдать инструкции изготовителя облучательного оборудования. А теперь остановимся на недостатках люминесцентного освещения, к которым многие причисляют его пресловутую «вредность для здоровья».

Природа газового разряда такова, что, как уже было сказано выше, любые ЛЛ имеют в спектре небольшую долю ближнего ультрафиолета. Известно, что при передозировке даже естественного солнечного света могут возникнуть неприятные явления, в часности избыточное ультрафиолетовое облучение может привести к заболеваниям кожи, повреждению глаз. Однако, сравнив воздействие на человека в течение жизни естественного солнечного и искусственного люминесцентного излучения, становится понятно, насколько необоснованно предположение о вреде излучения ЛЛ.

Было доказано, что работа в течение года (240 рабочих дней) при искусственном освещении ЛЛ холодно-белого света с очень высоким уровнем освещенности в 1000 лк (это в 5 раз превышает оптимальный уровень освещенности в жилье) соответствует пребыванию на открытом воздухе в г. Давос (Швейцария) в течении 12 дней по 1 часу в день (в полдень). Следует заметить, что реальные условия в жилых помещениях бывают в десятки раз более щадящими, чем в приведенном примере.

Следовательно, о вреде обычного люминесцентного освещения говорить не приходится. К аналогичным выводам пришли медики, гигиенисты и светотехники, принявшие участие в проводившейся в Мюнхене развернутой научной дискуссии на тему «Влияние освещения ЛЛ на здоровье человека». Все участники дискуссии были единодушны: строгое соблюдение правил грамотного устройства освещения, которые включают ограничение прямой и отраженной блескости, ограничение пульсации светового потока, обеспечение благоприятного распределения яркости и правильной светопередачи, полностью устранит существующие жалобы на люминесцентное освещение.

В приведенном выше перечне важное место занимает вопрос ограничения пульсации светового потока. Дело в том, что традиционные линейные трубчатые ЛЛ, подключенные к сети с помощью электромагнитного пускорегулирующего аппарата (чаще всего применяемого в светильниках), создают свет непостоянный во времени, а «микропульсирующий», т.е. при имеющейся в сети частоте переменного тока 50 Гц пульсация светового потока лампы происходит 100 раз в секунду.

И хотя эта частота выше критической для глаза и, следовательно, мелькающие яркости освещаемых объектов глазом не улавливаются, пульсация освещения при длительном воздействии может отрицательно влиять на человека, вызывая повышенную утомляемость, снижение работоспособности, особенно при выполнении напряженных зрительных работ: чтение, работе за компьютером, рукоделии и т. д.

Вот почему появившиеся достаточно давно светильники с электромагнитным низкочастотным ПРА рекомендуется использовать в так называемых «нерабочих» зонах (подсобных помещениях, повалах, гаражах и т. д.). В светильниках с электронным высокочастотным ПРА указанная особенность работы ЛЛ полностью устранена, но даже такие светильники с линейными ЛЛ достаточно громоздки и для местного (рабочего) освещения не всегда удобны. Поэтому для традиционного освещения жилья люстрами, настенными, напольными, настольными светильниками целесообразно применять упомянутые выше компактные люминесцентные лампы.

И, наконец, последнее небольшое замечание, связанное с эксплуатацией светильников с ЛЛ. В лампу для ее работы вводится капля ртути – 30-40 мг, а компактных 2-3 мг, Если вас это пугает, вспомните, что в термометре, имеющемся в каждой семье, содержится 2 г этого жидкого металла. Разумеется, если лампа разобьется, поступить следует так же, как мы поступаем, когда разбиваем термометр, – тщательно собрать и удалить ртуть. ЛЛ в жилье – это не только более экономичный, чем лампа накаливания, источник света.

Грамотное освещение ЛЛ имеет множество преимуществ перед традиционным: экономичность, обилие и красочность света, равномерность распределения светового потока, особенно в случаях высвечивания протяженных объектов линейными лампами , меньшая яркость ламп и значительно меньшее выделение тепла.

На сегодняшний день наиболее качественную продукцию и широкий ассортимент на нашем рынке представляют мировые светотехнические брэнды:

  1. Германская фирма OSRAM.
  2. Голландская PHILIPS и ряд других, которые предлагают широчайший выбор высококачественных ЛЛ на любой вкус и цвет.

Популярность применения люминесцентных ламп обусловлена несколькими факторами. Важнейшими из них являются их экономичность, эффективность работы, а также равномерный свет, испускаемый с достаточно большой площади поверхности. Но помимо этих качеств необходимо знать правила подключения люминесцентных ламп. Для этого применяется несколько типов схем и дополнительных устройств.

Особенности функционирования люминесцентных приборов

В основу работы этих источников света заложен эффект формирования ИК излучения парами ртути под воздействием электрического разряда. На практике для этого в стеклянную колбу помещают спиральную пару катод-анод, внутреннюю поверхность лампы обрабатывают люминофорным раствором. Затем происходит наполнение конструкции сложной смесью, основным компонентом которой являются пары ртути.

При подаче электротока возникает разряд, который и приводит к свечению лампы. Но в отличие от аналогичных моделей накаливания величина разряда должна быть четко нормированной. Только при соблюдении этого условия возможен равномерный процесс формирования света.

Для осуществления этого применяют два типа приборов:

  1. ЭмПРА – пускорегулирующий аппарат. Он более известен как дроссель. Может использоваться в паре со стартером.
  2. ЭПРА. Более надежный и технологичный способ контроля работы люминесцентной лампы. Его применение практически полностью исключает характерное мигание лампы.

В настоящее время большее распространение получили схемы с установкой ЭмПРА. Это связано с их дешевизной и возможность реализации подключения нескольких ламп.

Специфика применения ЭмПРА

Для применения электромагнитного запуска понадобятся компенсационный конденсатор, дроссель и стартер. В целях обеспечения надежности функционирования схемы вся внутренняя проводка должна быть выполнена проводами ПУГВ.


Схема для одной лампы

Для лучшего понимания необходимо рассмотреть все этапы включения:

  • После замыкания контакта К происходит подача электрического тока на стартер. Он представляет собой небольшую газоразрядную лампу. При этом в ней начинает формироваться тлеющий разряд, значение напряжения которого меньше чем в сети, но больше нормированного для основного прибора освещения.
  • Затем происходит тепловое расширение электродов, в результате которого они соединяются, образуя электрическую цепь. Величина тока, протекающего по ней, напрямую зависит от параметров дросселя. Он должен превышать номерованный для лампы в 1,5-2 раза.
  • В это время происходит предварительный разогрев пары катод-анод в лампе для формирования разряда в газовой среде. После размыкания электродов дросселя появляется высокий ток самоиндукции. Конденсатор снижает эту величину до нужного уровня.
  • Резкий рост напряжения провоцирует появление в колбе большого количества заряженных частиц, которые и приводят к формированию плазмы и как следствие – газового разряда.

По такому же принципу можно сделать соединение двух люминесцентных ламп. Процессы, протекающие в этой цепи, практически полностью аналогичны вышеописанным.


Подключение двух световых приборов

К недостаткам такого способа подключения относят небольшой срок службы дросселей и стартеров. Это связано со спецификой процессов, которые происходят в них.

Подключение с помощью ЭПРА

Намного эффективнее использовать ЭПРА – электронный пускорегулирующий аппарат. Его принцип работы отличается от ЭмПРА. Это устройство подает на контакты лампы высокочастотное напряжение, величина которого может варьироваться от 25 до 130 Гц.


Для прибора достаточно предварительно ознакомиться с инструкцией. В большинстве случаев схема подсоединения состоит из следующих этапов.

  1. Подключение контактов к электросети.
  2. Соединение проводов с клеммами нитей накалов. Для каждой из них потребуется два контакта.

Преимущества применения этого пускового устройства заключаются в существенной экономии электроэнергии, увеличении срока службы, а также полного отсутствия мерцания и характерного для люминесцентных осветительных приборов шума.

Уважаемые посетители сайта!!!

Иногда встречается такая неисправность, после установки и подключения светильника с двумя люминесцентными лампами,- светильник исправно работает. Проходит несколько месяцев и светильник начинает включаться с одной лампой. Начинаешь прокручивать лампу в патронах, меняешь стартера, а результата никакого. Что делать и как быть, как самому отремонтировать светильник-с люминесцентными лампами?

Светильник с двумя люминесцентными лампами

Для начала рассмотрим схемы таких светильников с люминесцентными лампами:

Схема рис.1 содержит:

  • две люминесцентные лампы;
  • два стартера;
  • один дроссель;
  • конденсатор.

Люминесцентная лампа имеет две спирали накаливания. Лампы, стартера и дроссель в электрическую цепь включены последовательно. Конденсатор подключен параллельно.

Схема рис.2 содержит:

  • конденсатор;
  • два стартера;
  • две люминесцентных лампы;
  • два дросселя.

Подключение люминесцентных ламп рис.2 ни чем не отличаются от схемы подключения ламп рис.1. Два провода \фаза, ноль\ имеют в этой схеме ответвление.

И наиболее простая схема светильника с одной лампой показана на рис.3, где конденсатор, лампа и стартер в схеме, - подключены параллельно. Дроссель подключен в электрической цепи - последовательно.

Подобные светильники встречаются и с тремя лампами. Сама суть дела не в этом,- не в количестве ламп.

Неисправности люминесцентных светильников

Причинами не включения светильника с одной лампой или светильника состоящего из двух ламп и более, когда не включается одна из ламп светильника, могут быть в следующем:

  1. неисправность самой лампы;
  2. нет контакта с дросселем;
  3. нет контакта со стартером;
  4. разрыв в провода.

Электрическую цепь светильника и установить где именно находится разрыв, - можно проверить пробником. После того как Вы приобрели светильник, проверьте все контактные соединения светильника.

Пример из практики. В помещении полностью провел электрику с установкой и подключением люминесцентных светильников с двумя лампами, через определенное время светильники некоторые стали работать с одной лампой. Когда стал проверять контактные соединения светильников, оказалась причина в следующем, - ненадежное контактное соединение одного из проводов с с дросселем. Там где не было контакта с дросселем,- лампа не включалась.

Ремонт люминесцентных светильников-с электронным балластом

Люминесцентные потолочные встраиваемые светильники Армстронг \ с электронным балластом \ просты в своем исполнении и удобны тем, что при снятии и установке - не требуют каких либо усилий.


светильник встраиваемый потолочный Армстронг



электронный балласт \блок питания\ FINTAR

Привожу пример из своей практики. Необходимо было устранить неисправность потолочного встраиваемого светильника Армстронг.

Для этого, светильник нужно было снять с потолка и проверить электрические соединения. В результате проведенной диагностики было установлено, что элементы электроники состоящие в электронном балласте FINTAR вышли из строя, - перегорели.

Именно такого блока питания в продаже не было, пришлось приобрести другой подобный электронный балласт для светильника на четыре люминесцентные лампы - Navigator.


электронный балласт Navigator

Если внимательно посмотреть на два блока питания, электрические схемы подключения люминесцентных ламп разные.

Возникает вопрос: Как подключить люминесцентные лампы потолочного светильника к другому блоку питания?

Как подключить люминесцентные лампы

Соединения проводов с патронами люминесцентных ламп в этом примере нужно выполнять только по электрической схеме вновь устанавливаемого блока питания.

Соответственно схему контактных соединений проводов пришлось переделывать, в одном месте отрезать, в другом нарастить провод. При изменении схемы соединений, провода предварительно соединяются скруткой и изолируются изоляционной лентой.

После всех выполненных соединений и убедившись в том, что при подключении светильника к внешнему источнику электрической энергии \розетке\ - все четыре люминесцентные лампы загораются, - изоляционная лента убирается в месте соединений проводов.


На один из проводов надевается отрезок кембрика. Соединенные медные провода протравливаются паяльной кислотой и затем на место соединения - паяльником наносится небольшой слой олова \паяние проводов\.


протравливание соединений проводов паяльной кислотой с последующим паянием




изоляция соединений проводов кембриком \вместо изоляционной ленты\

Такой способ соединения проводов с последующей изоляцией кембриком - более прост и надежен. Если соединить два провода просто в скрутку \без паяния\ и затем изолировать изоляционной лентой, - соединение будет в дальнейшем подвергаться окислению и нагреванию проводов.

Нумерация контактных соединений проводов с электронным балластом - идет сверху вниз. То есть первое и второе контактное соединение проводов должно соответствовать подключению двух люминесцентных ламп \с одной стороны \ и так далее. При соединении, нужно внимательно смотреть по электрической схеме блока питания и следовать данному выполнению таких соединений.


контактное соединение проводов к электронному блоку питания \электронному балласту\

На концы оголенных проводов предварительно перед соединением к электронному блоку питания, наносится также небольшой слой олова, - для качественного соединения.

Сложного здесь в общем то ничего нет и подобную неисправность Вы сможете легко устранить.

Для подключения люминесцентных осветительных приборов применяется принципиально другая схема, чем используемая для стандартных ламп накаливания. Чтобы зажечь такой источник света, в цепи устанавливается специальное пусковое устройство, качество которого напрямую влияет на срок службы светильника. Для полного осознания особенностей, схем подключений, люминесцентных ламп нужно разбираться в особенностях их устройства и принципе работы такого прибора.

Люминесцентная осветительная лампа – прибор, состоящий из стеклянной колбы, в которой содержатся специальные газы. Смесь внутри лампы подобрана так, чтобы ионизация происходила при минимальном количестве затрат энергии в отличие от стандартной лампы накаливания, что позволяет экономить электричество.

Для поддержания непрерывного свечения люминесцентного осветительного прибора в нём необходимо постоянное присутствие тлеющего разряда. Это достигается благодаря подаче определённого уровня напряжения на электроды люминесцентного светильника. Единственной проблемой в данном случае является необходимость постоянной подачи напряжения в значительной мере превышающего номинальные значения.

Данная проблема была решена установкой электродов с обеих сторон колбы. На них подаётся напряжение, благодаря чему происходит непрерывное поддержание разряда. При этом каждый электрод состоит из двух контактов , соединённых с источником тока, за счёт чего прогревается окружающее пространство. Поэтому лампа начинает гореть с задержкой, обусловленной прогревом электродов.

Под действием разрядов электродов газ начинает светиться ультрафиолетовым свечением , которое не воспринимает человеческий глаз. Поэтому для проявления света внутренняя часть колбы вскрывается слоем люминофора, благодаря которому происходит изменение частотных диапазонов в видимый человеком спектр.

Люминесцентная лампа не может, в отличие от стандартного источника света с нитью накаливания, включаться напрямую в сеть переменного тока. Для возникновения дуги, необходим прогрев электродов, вследствие которого появляется импульсное напряжение. Чтобы обеспечить необходимые условия для свечения люминесцентного источника света используют специальные балласты. На сегодняшний день широко применяется электромагнитный и электронный балласт.

Такая схема подключения люминесцентного светильника подразумевает использование специального дросселя и стартера. При этом стартер является не чем иным, как источником неонового света малой мощности. Для подключения дросселя, стартерных контактов и электродной нити используют последовательный способ.

Заменить стартер можно стандартной кнопкой дверного электрического звонка. При этом для розжига люминесцентной лампы понадобится удерживать кнопку в нажатом состоянии и отпускать только после того, как светильник начнёт излучать свет. Порядок функционирования схемы подключения источника света с помощью электромагнитного пускорегулирующего устройства происходит по следующему принципу:

  • после подключения к сети переменного тока дросселем накапливается электромагнитный заряд;
  • через контактную группу стартерного устройства происходит подача электрической энергии;
  • ток начинает поступать на нити разогрева электродов изготовленных из вольфрама;
  • происходит разогрев стартера и электродов;
  • контактная группа стартера размыкается;
  • происходит высвобождение аккумулированной в дросселе энергии;
  • на электродах изменяется напряжение;
  • люминесцентный светильник начинает светиться.

Чтобы увеличить КПД люминесцентного осветительного прибора и снизить помехи, которые могут возникать в момент загорания лампы, в схеме предусмотрены конденсаторы. Одна ёмкость монтируется непосредственно в стартере для гашения искрения и улучшения неоновых импульсов. При этом такая схема подключения обладает рядом неоспоримых преимуществ:

  • максимальная надёжность, доказанная временем;
  • простота сборки;
  • невысока цена.

Также хочется отметить и недостатки, которых достаточно много:

  • большие габариты и вес светильника;
  • длительный запуск лампы;
  • малая эффективность прибора при работе в условиях низких температур;
  • достаточно большой уровень потребления электричества;
  • характерный шум дросселей во время работы;
  • эффект мерцания, пагубно влияющий на человеческое зрение.

Для воплощения рассмотренной схемы в жизнь понадобится задействовать стартер. Для подключения одного осветительного прибора в сеть используют электромагнитный балласт серии S10. Это современный элемент, обладающий невозгораемой конструкцией и делающий его максимально безопасным. При этом основными задачами стартера являются следующие функции:

  • обеспечение включения люминесцентного светильника;
  • пробой газовых промежутков после длительного прогрева электродов.

Если рассматривать дроссель, то его назначение в схеме обусловлено достижением следующих целей:

  • ограничение параметров тока в процессе замыкания электродов;
  • выработка достаточной степени напряжения способного пробить газы;
  • поддержание стабильности горения разряда.

Такая схема предусматривает подключение люминесцентного источника света мощностью до 40 Вт. При этом мощностные показатели дросселя должны быть аналогичными параметрам светильник а. В свою очередь, мощность стартера может колебаться от 4 до 65 Вт. Для подключения светового источника в сеть переменного тока в соответствии со схемой необходимо проделать определённые манипуляции.

  1. Выполняется параллельное подключение стартера к контактам, расположенным на выходе люминесцентной лампы.
  2. На свободную пару контактов подсоединяется дроссель.
  3. К контактам, подающим питание на светильник, подключается параллельным способом конденсатор, предназначенный для компенсирования реактивной мощности и снижения помех в сети переменного тока.

Принцип работы схемы электронного балласта 2х36 основан на увеличении частотных характеристик. За счёт такого изменения частоты, свечение люминесцентного прибора становится равномерным без мерцания. Благодаря современным микросхемам пусковое устройство потребляет минимум энергии и обладает компактными габаритами, при этом равномерно подогревая электроды.

Использование электронного пускорегулирующего устройства в схеме подключения люминесцентной лампы позволяет прибору автоматически подстраиваться под параметры светильника. Благодаря этому электронный балласт намного практичней и эффективней , так как обладает следующими достоинствами:

  • высокая экономичность;
  • равномерный и постепенный разогрев электродов;
  • плавный старт светильника;
  • отсутствие эффекта мерцания;
  • использование светильника даже при отрицательных температурах;
  • автоматическая подстройка балласта под параметры лампы;
  • высокая надёжность;
  • минимальные размеры и вес прибора;
  • максимально длительный эксплуатационный срок люминесцентной лампы.

Если рассматривать недостатки электронного балласта, то их совсем немного: сложная схема и повышенные требования к точности выполнения монтажных работ, а также требования, предъявляемые к качеству используемых комплектующих элементов.

В большинстве случаев производители электронного балласта укомплектовывают его всеми необходимыми проводами и коннекторами, а также принципиальной схемой подключения прибора. При этом такое электронное устройство для пуска люминесцентной лампы выполняет три основных функции:

  • обеспечивает плавный прогрев электродов, который увеличивает эксплуатационный ресурс светильника;
  • создаёт мощный импульс, необходимый для розжига лампы;
  • стабилизирует параметры рабочего напряжения, подающегося, на осветительный прибор.

Современные схемы подключения люминесцентных источников света не предусматривают дополнительного использования стартера. Это позволяет защитить электронный балласт в случае включения света при отсутствии лампы.

Отдельное внимание следует уделить схеме подсоединения двух источников света к одному балласту. При этом используется последовательное подключение осветительных приборов , для чего понадобятся следующие комплектующие:

  • дроссель индукционного действия;
  • 2 стартера;
  • осветительные приборы.

Само же подключение предусматривает определённую последовательность.

  1. На каждую лампу устанавливается стартер по параллельной схеме подключения.
  2. Незадействованные контакты включаются в сеть переменного тока через дроссель последовательным способом подключения.
  3. Параллельно на контактные группы светильников присоединяются конденсаторы.

Ознакомившись с различными схемами подсоединения люминесцентных светильников, каждый желающий сможет самостоятельно установить осветительные приборы в своей квартире или выполнить их замену в случае выхода последних из строя.