Эдс самоиндукции и индуктивность цепи. Явление самоиндукции индуктивность Физическая суть явления самоиндукции

Как было установлено опытным путём, вокруг любого проводника с током создаётся магнитное поле. Мы знаем, магнитный поток Ф, проходящий через контур прямо пропорционален индукции В магнитного поля и площади S, охватываемой проводником Индукция В магнитного поля, созданного проводником с током, в каждой точке пространства вокруг этого проводника пропорциональна силе тока I в проводнике. Следовательно, магнитный поток Ф через данный проводящий контур (S = const) прямо пропорционален силе тока в контуре:

Коэффициент пропорциональности L между силой тока I и магнитным потоком через контур называется индуктивностью контура или коэффициентом самоиндукции. Он зависит от площади, охватываемой контуром, от его формы, свойств среды, в которой находится контур.

В СИ единицей индуктивности является Генри (Гн).

L = Ф / I,

1 Гн = 1Вб / 1А.

Контур, в котором электрический ток с силой 1 Ампер создаёт магнитный поток 1 Вебер, обладает индуктивностью 1 Генри.

Постоянный ток I, протекающий через контур индуктивностью L, создаёт вокруг контура магнитный поток Ф, равный

Что произойдёт с данным контуром при выключении тока?

Ток прекратится, магнитное поле исчезнет. Вспомним, исчезновение магнитного потока - это его изменение от начального значения Ф = LI до нуля. Согласно закону электромагнитной индукции, изменения магнитного потока через контур должно вызывать появление ЭДС индукции равной:

Ε is = -∆Ф/∆t = -L (∆I/∆t)

Явление возникновения ЭДС индукции, вызванной изменением силы тока в самом контуре называется самоиндукцией .

С изменением тока в контуре пропорционально меняется и магнитный поток через поверхность, которая ограничена этим контуром. По закону электромагнитной индукции, изменение магнитного потока приводит к возбуждению в этом контуре индуктивной ЭДС.

Единицей индуктивности 1 Генри обладает такой контур , в котором при изменении силы тока на 1 Ампер за 1 секунду возникает ЭДС самоиндукции в 1 Вольт.

По правилу Ленца, ЭДС самоиндукции при уменьшении силы тока в контуре действует в направлении поддержания силы тока неизменной, при увеличении силы тока в контуре ЭДС самоиндукции препятствует увеличению тока.

Для обнаружения явления самоиндукции можно использовать электрическую цепь, представленную на схеме:

В данной цепи параллельно включены резистор и катушка с железным сердечником, последовательно с резистором и катушкой включены электрические лампы. Электрическое сопротивление резистора равно электрическому сопротивлению катушки на постоянном токе, поэтому при параллельном подключении их к источнику тока лампы должны гореть одинаково ярко.

Проведём несколько опытов. При замыкании цепи лампа в цепи катушки загорается заметно позднее, чем лампа в цепи резистора. Это можно объяснить тем, что катушка с железным сердечником обладает большой индуктивностью, ЭДС самоиндукции препятствует возрастанию тока при включении.

Обе лампы вспыхивают при отключении источника тока. Ток в цепи катушки и резистора создаёт ЭДС самоиндукции, возникающую при уменьшении силы тока в катушке. Это показывает, что магнитное поле не только способно действовать на движущие заряды, но и обладает определённым запасом энергии. Именно за счёт энергии магнитного поля возникает ток в цепи при отключении её от источника тока.

При изменении силы тока в проводнике в последнем возникает вихревое электрическое поле. Это поле тормозит электроны при возрастании силы тока и ускоряет их при убывании электрического тока в этом проводнике.

Явление самоиндукции играет очень важную роль в элекротехнике и радиотехнике. Индуктивность цепи оказывает существенное влияние на прохождение по цепи переменного электрического тока.

Остались вопросы? Не знаете, что такое самоиндукция?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

  • Индуктивность

Индуктивность

  • Ток I , текущий в замкнутом контуре, вокруг себя создает магнитное поле B .

  • Ф ~ I .

  • где коэффициент пропорциональности L называется индуктивностью контура .

Явление самоиндукции

  • При изменении тока I в контуре изменяется создаваемое им магнитное поле. Следовательно, в контуре индуцируется э.д.с.

  • Этот процесс называется самоиндукцией .

  • В системе СИ индуктивность измеряется в генри: [L ] = Гн = Вб/А = В·с/А.

Явление самоиндукции

  • Э.д.с. индукции Ei создается внешним магнитным полем.

  • Э.д.с. самоиндукции ES создается при изменении собственного магнитного поля.

  • В общем случае индуктивность контура L зависит от

  • 1) геометрической формы контура и его размеров,

  • 2) магнитной проницаемости среды, в которой находится контур.

  • В электростатике аналогом индуктивности является электроемкость С уединенного проводника, которая зависит от формы, размеров, диэлектрической проницаемости ε среды.

  • L = const , если магнитная проницаемость μ среды и геометрические размеры контура постоянны.

Закон Фарадея для самоиндукции

  • Знак минус в законе Фарадея в соответствии с правилом Ленца означает, что наличие индуктивности L приводит к замедлению изменения тока I в контуре.

Если ток I возрастает, то dI / dt > 0 и, соответственно, ES < 0, т.е. ток самоиндукции IS направлен навстречу току I

  • Если ток I возрастает, то dI / dt > 0 и, соответственно, ES < 0, т.е. ток самоиндукции IS направлен навстречу току I внешнего источника и замедляет его нарастание.

  • Если ток I убывает, то dI / dt < 0 и, соответственно, ES > 0, т.е. ток самоиндукции IS имеет то же направление, что и убывающий ток I внешнего источника и замедляет его убывание.

^ Закон Фарадея для самоиндукции

  • Если контур обладает определенной индуктивностью L , то любое изменение тока I тормозится тем сильнее, чем больше L контура, т.е. контур обладает электрической инертностью .

Индуктивность соленоида

  • Индуктивность L зависит только от геометрических размеров контура и магнитной проницаемости μ среды.

  • ФN – поток магнитной индукции через N витков,

  • Ф = BS - магнитный поток сквозь площадку S , ограниченную одним витком.

Индуктивность соленоида

  • Поле соленоида:

  • l – длина соленоида,

  • n = N / l – число витков на единицу длины соленоида.

  • (2) (1):

  • По правилу Ленца при включении и выключении тока в цепи, содержащей индуктивность L , возникает ток самоиндукции IS , который направлен так, чтобы препятствовать изменению тока I в цепи.

Экстратоки размыкания

  • Ключ К в положении 1 :

  • Ключ К в положении 2 (размыкание цепи) :

  • Возникает ES и обусловленный ею ток

Экстратоки размыкания

  • постоянная, называемая временем релаксации – время, в течение которого сила тока I уменьшается в е раз.

  • Чем больше L , тем больше τ , и тем медленнее уменьшается ток I .

Экстратоки замыкания

  • При замыкании цепи помимо внешней э.д.с. E возникает э.д.с. самоиндукции ES .

Экстратоки замыкания

  • В момент замыкания t = 0 сила тока I = 0, переменная a 0 = – I 0, в момент времени t сила тока I , переменная a = I I 0

Экстратоки замыкания

  • I 0 – установившийся ток.

  • Установление тока происходит тем быстрее, чем меньше L цепи и больше её сопротивление R

Экстратоки замыкания и размыкания

  • Поскольку сопротивление батареи r обычно мало, то можно считать, что R R 0, где

  • R 0 – сопротивление цепи без учета сопротивления источника ЭДС. Установившийся ток

R 0 до R .

  • ● Мгновенное увеличение сопротивления цепи от R 0 до R .

  • Установившийся ток был

  • При отключении источника э.д.с.

  • (размыкание цепи) ток изменяется по закону

  • Величина э.д.с. самоиндукции

R R >> R 0), то ES

  • Если цепь переключается на очень большое внешнее сопротивление R , например, происходит разрыв цепи (R >> R 0), то ES может стать огромным и образуется вольтова дуга между разомкнутыми концами выключателя.

э.д.с. самоиндукции

  • В цепи, обладающей большой индуктивностью, ES может оказаться больше э.д.с. источника E, включенного в цепь, что может привести к пробою изоляции и выходу из строя оборудования.

  • Поэтому сопротивление в контур надо вносить постепенно, уменьшая величину отношения dI /dt .

Взаимная индукция

  • Магнитный поток, образованный контуром 1, пронизывает контур 2:

  • L 21 – коэффициент пропорциональности.

  • Если I 1 изменяется, то в контуре 2 индуцируется э.д.с.

Взаимная индукция

  • Аналогично, если в контуре 2 изменяется I 2, то в первом контуре изменение магнитного потока индуцирует э.д.с.:

Коэффициенты L 12 = L 21 – взаимная индуктивность контуров зависит от

  • 1. геометрической формы,

  • 2. размеров,

  • 3. взаимного расположения,

  • 4. магнитной проницаемости среды μ .

Для двух катушек на общем тороидальном сердечнике

  • N 1, N 2 – число витков первого и второго контура, соответствен,

  • l – длина сердечника (тороида) по средней линии,

  • S – сечение сердечника.

Трансформатор – устройство, состоящее из двух и более катушек, намотанных на один общий сердечник.

  • Служат для повышения или понижения напряжения переменного тока:

  • коэффициент трансформации.

  • Конструктивно трансформаторы выполняют так, что магнитное поле почти полностью сосредоточено в сердечнике.

  • В большинстве трансформаторов вторичная обмотка наматывается поверх первичной обмотки.

Автотрансформатор – трансформатор, состоящий из одной обмотки.

  • Повышающий:

  • 1-2 U подводится, 1-3 U снимается.

  • Понижающий:

  • 1-3 U подводится, 1-2 U снимается.

Скин–эффект

  • При прохождении переменного тока по проводнику внутри проводника магнитное поле изменяется. Изменяющееся во времени магнитное поле порождает в проводнике вихревые токи самоиндукции .

Скин–эффект

  • Плоскости вихревых токов проходят через ось проводника.

  • По правилу Ленца, вихревые токи препятствуют изменению основного тока внутри проводника и способствуют его изменению вблизи поверхности.

  • Для переменного тока сопротивление внутри проводника больше сопротивления на поверхности R внутри > R поверх.

Скин–эффект

  • Плотность переменного тока неодинакова по сечению:

  • jmax на поверхности, jmin внутри на оси.

  • Это явление называется скин–эффектом .

Следствие скин–эффекта

  • ВЧ токи текут по тонкому поверхностному слою, поэтому проводники для них делают полыми, а часть внешней поверхности покрывают серебром.

Применение:

  • метод поверхностной закалки металлов, у которых при нагреве токами высокой частоты (ТВЧ) происходит разогрев только поверхностного слоя.

Энергия магнитного поля. Объемная плотность энергии магнитного поля

  • Энергия магнитного поля равна работе, которая затрачивается током на создание этого поля.

  • Работа, обусловленная индукционными явлениями

Энергия магнитного поля

  • Работа dA затрачивается на изменение магнитного потока на величину .

  • Работа по созданию магнитного потока Ф :

Объемная плотность энергии магнитного поля

  • Найдем ω на пример соленоида

При замыкании выключателя в цепи, представленной на рисунке 1, возникнет , направление которого показано одинарными стрелками. С появлением тока возникает , индукционные линии которого пересекают проводник и индуктируют в нем (ЭДС). Как было указано в статье "Явление электромагнитной индукции ", эта ЭДС называется ЭДС самоиндукции. Так как всякая индуктированная ЭДС по направлена против причины, ее вызвавшей, а этой причиной будет ЭДС батареи элементов, то ЭДС самоиндукции катушки будет направлена против ЭДС батареи. Направление ЭДС самоиндукции на рисунке 1 показано двойными стрелками.

Таким образом, ток устанавливается в цепи не сразу. Только когда установится, пересечение проводника магнитными линиями прекратится и ЭДС самоиндукции исчезнет. Тогда в цепи будет протекать .

На рисунке 2 дано графическое изображение постоянного тока. По горизонтальной оси отложено время, по вертикальной оси - ток. Из рисунка видно, что если в первый момент времени ток равен 6 А, то в третий, седьмой и так далее моменты времени он также и будет равен 6 А.

На рисунке 3 показано, как устанавливается ток в цепи после включения. ЭДС самоиндукции, направленная в момент включения против ЭДС батареи элементов, ослабляет ток в цепи, и поэтому в момент включения ток равен нулю. Далее в первый момент времени ток равен 2 А, во второй момент времени - 4 А, в третий - 5 А, и только спустя некоторое время в цепи устанавливается ток 6 А.

Рисунок 3. График нарастания тока в цепи с учетом ЭДС самоиндукции Рисунок 4. ЭДС самоиндукции в момент размыкания цепи направлена одинаково с ЭДС источника напряжения

При размыкании цепи (рисунок 4) исчезающий ток, направление которого показано одинарной стрелкой, будет уменьшать свое магнитное поле. Это поле, уменьшаясь от некоторой величины до нуля, будет вновь пересекать проводник и индуктировать в нем ЭДС самоиндукции.

При выключении электрической цепи с индуктивностью ЭДС самоиндукции будет направлена в ту же сторону, что и ЭДС источника напряжения. Направление ЭДС самоиндукции показано на рисунке 4 двойной стрелкой. В результате действия ЭДС самоиндукции ток в цепи исчезает не сразу.

Таким образом, ЭДС самоиндукции всегда направлена против причины, ее вызвавшей. Отмечая это ее свойство, говорят что ЭДС самоиндукции имеет реактивный характер.

Графически изменение тока в нашей цепи с учетом ЭДС самоиндукции при замыкании ее и при последующем размыкании в восьмой момент времени показано на рисунке 5.

Рисунок 5. График нарастания и исчезновения тока в цепи с учетом ЭДС самоиндукции Рисунок 6. Индукционные токи при размыкании цепи

При размыкании цепей, содержащих большое количество витков и массивные стальные сердечники или, как говорят, обладающих большой индуктивностью, ЭДС самоиндукции может быть во много раз больше ЭДС источника напряжения. Тогда в момент размыкания воздушный промежуток между ножом и неподвижным зажимом рубильника будет пробит и появившаяся электрическая дуга будет плавить медные части рубильника, а при отсутствии кожуха на рубильнике может ожечь руки человека (рисунок 6).

В самой цепи ЭДС самоиндукции может пробить изоляцию витков катушек, и так далее. Во избежание этого в некоторых выключающих приспособлениях устраивают защиту от ЭДС самоиндукции в виде специального контакта, который замыкает накоротко обмотку электромагнита при выключении.

Следует учитывать, что ЭДС самоиндукции проявляет себя не только в моменты включения и выключения цепи, но также и при всяких изменениях тока.

Величина ЭДС самоиндукции зависит от скорости изменения тока в цепи. Так, например, если для одной и той же цепи в одном случае в течение 1 секунды ток в цепи изменился с 50 до 40 А (то есть на 10 А), а в другом случае с 50 до 20 А (то есть на 30 А), то во втором случае в цепи будет индуктироваться втрое большая ЭДС самоиндукции.

Величина ЭДС самоиндукции зависит от индуктивности самой цепи. Цепями с большой индуктивностью являются обмотки генераторов, электродвигателей, трансформаторов и индукционных катушек, обладающих стальными сердечниками. Меньшей индуктивностью обладают прямолинейные проводники. Короткие прямолинейные проводники, лампы накаливания и электронагревательные приборы (печи, плитки) индуктивностью практически не обладают и появления ЭДС самоиндукции в них почти не наблюдается.

Магнитный поток, пронизывающий контур и индуктирующий в нем ЭДС самоиндукции, пропорционален току, протекающему по контуру:

Ф = L × I ,

где L - коэффициент пропорциональности. Он называется индуктивностью. Определим размерность индуктивности:

Ом × сек иначе называется генри (Гн).

1 генри = 10 3 ; миллигенри (мГн) = 10 6 микрогенри (мкГн).

Индуктивность, кроме генри, измеряют в сантиметрах:

1 генри = 10 9 см.

Так, например, 1 км линии телеграфа обладает индуктивностью 0,002 Гн. Индуктивность обмоток больших электромагнитов достигает нескольких сотен генри.

Если ток в контуре изменился на Δi , то магнитный поток изменится на величину Δ Ф:

Δ Ф = L × Δ i .

Величина ЭДС самоиндукции, которая появится в контуре, будет равна (формула ЭДС самоиндукции):

При равномерном изменении тока по времени выражение будет постоянным и его можно заменить выражением . Тогда абсолютная величина ЭДС самоиндукции, возникающая в контуре, может быть найдена так:

На основании последней формулы можно дать определение единицы индуктивности - генри:

Проводник обладает индуктивностью 1 Гн, если при равномерном изменении тока на 1 А в 1 секунду в нем индуктируется ЭДС самоиндукции 1 В.

Как мы убедились выше, ЭДС самоиндукции возникает в цепи постоянного тока только в моменты его включения, выключения и при всяком его изменении. Если же в цепи неизменна, то магнитный поток проводника постоянен и ЭДС самоиндукции возникнуть не может (так как . В моменты изменения тока в цепи ЭДС самоиндукции мешает изменениям тока, то есть оказывает ему своеобразное сопротивление.

Часто на практике встречаются случаи, когда нужно изготовить катушку, не обладающую индуктивностью (добавочные сопротивления к электроизмерительным приборам, сопротивления штепсельных реостатов и тому подобные). В этом случае применяют бифилярную обмотку катушки (рисунок 7)

Как нетрудно видеть из чертежа, в соседних проводниках токи проходят в противоположных направлениях. Следовательно, магнитные поля соседних проводников взаимно уничтожаются. Общий магнитный поток и индуктивность катушки будут равны нулю. Для еще более полного уяснения понятия индуктивности приведем пример из области механики.

Как известно из физики, по второму закону Ньютона ускорение, полученное телом под действием силы, пропорционально самой силе и обратно пропорционально массе тела:

Сравним последнюю формулу с формулой ЭДС самоиндукции, взяв абсолютное значение ЭДС:

Если в этих формулах изменения скорости во времени уподобить изменению тока во времени , механическую силу - электродвижущей силе самоиндукции, то масса тела будет соответствовать индуктивности цепи.

При равномерном прямолинейном движении a = 0, поэтому F = 0, то есть если на тело не действуют силы, его движение будет прямолинейным и равномерным (первый закон Ньютона).

В цепях постоянного тока величина тока не меняется и поэтому e L = 0.

Самоиндукцией называется появление в проводнике электродвижущей силы (ЭДС), направленной в противоположную сторону относительно напряжения источника питания при протекании тока. При этом оно возникает в момент, когда сила тока в цепи изменяется. Изменяющийся электрической ток порождает изменяющееся магнитное поле, оно в свою очередь наводит ЭДС в проводнике.

Это похоже на формулировку закона электромагнитной индукции Фарадея, где сказано:

При прохождении магнитного потока через проводник, в последнем возникает ЭДС. Она пропорциональна скорости изменения магнитного потока (мат. производная по времени).

E=dФ/dt ,

Где E – ЭДС самоиндукции, измеряется в вольтах, Ф – магнитный поток, единица измерения – Вб (вебер, он же равен В/с)

Индуктивность

Мы уже сказали о том, что самоиндукция присуща индуктивным цепям, поэтому рассмотрим явление самоиндукции на примере катушки индуктивности.

Катушка индуктивности – это элемент, который представляет собой катушку из изолированного проводника. Для увеличения индуктивности увеличивают число витков или внутрь катушки помещают сердечник из магнитомягкого или другого материала.

Единица измерения индуктивности – Генри (Гн). Индуктивность характеризует то, насколько сильно проводник противодействует электрическому току. Так как вокруг каждого проводника, по которому протекает ток, образуется магнитное поле, и, если поместить проводник в переменное поле – в нем возникнет ток. В свою очередь магнитные поля каждого витка катушки складываются. Тогда вокруг катушки, по которой протекает ток, возникнет сильное магнитное поле. При изменении его силы в катушке будет изменяться и магнитный поток вокруг неё.

Согласно закону электромагнитной индукции Фарадея, если катушку будет пронизывать переменный магнитный поток, то в ней возникнет ток и ЭДС самоиндукции. Они будут препятствовать току, который протекал в индуктивности от источника питания к нагрузке. Их еще называют экстратоки ЭДС самоиндукции.

Формула ЭДС самоиндукции на индуктивности имеет вид:

То есть чем больше индуктивность, и чем больше и быстрее изменился ток – тем сильнее будет всплеск ЭДС.

При возрастании тока в катушке возникает ЭДС самоиндукции, которая направлена против напряжения источника питания, соответственно возрастание тока замедлится. То же самое происходит при убывании – самоиндукция приведет к появлению ЭДС, которое будет поддерживать ток в катушке в том же направлении, что и до этого. Отсюда следует, что напряжение на выводах катушки будет противоположным полярности источника питания.

На рисунке ниже вы видите, что при включении/отключении индуктивной цепи ток не резко возникает, а изменяется постепенно. Об этом говорят и законы коммутации.

Другое определение индуктивности звучит так: магнитный поток пропорционален току, но в его формуле индуктивность выступает в качестве коэффициента пропорциональности.

Трансформатор и взаимоиндукция

Если расположить две катушки в непосредственной близости, например, на одном сердечнике, то будет наблюдаться явление взаимоиндукции. Пропустим переменный ток по первой, тогда её переменный поток будет пронизывать витки второй и на её выводах появится ЭДС.

Это ЭДС будет зависеть от длины провода, соответственно количества витков, а также от величины магнитной проницаемости среды. Если их расположить просто около друг друга — ЭДС будет низким, а если взять сердечник из магнитомягкой стали – ЭДС будет значительно больше. Собственно, так и устроен трансформатор.

Интересно: такое взаимное влияние катушек друг на друга называют индуктивной связью.

Польза и вред

Если вам понятна теоретическая часть, стоит рассмотреть где применяется явление самоиндукции на практике. Рассмотрим на примерах того, что мы видим в быту и технике. Одно из полезнейших применений – это трансформатор, принцип его работы мы уже рассмотрели. Сейчас встречаются все реже, но ранее ежедневно использовались люминесцентные трубчатые лампы в светильниках. Принцип их работы основан на явлении самоиндукции. Её схемы вы можете увидеть ниже.

После подачи напряжения ток протекает по цепи: фаза — дроссель — спираль — стартер — спираль — ноль.

Или наоборот (фаза и ноль). После срабатывания стартера, его контакты размыкаются, тогда (катушка с большой индуктивностью) стремится поддержать ток в том же направлении, наводит ЭДС самоиндукции большой величины и происходит розжиг ламп.

Аналогично это явление применяется в цепи зажигания автомобиля или мотоцикла, которые работают на бензине. В них в разрыв между катушкой индуктивности и минусом (массой) устанавливают механический (прерыватель) или полупроводниковый ключ (транзистор в ЭБУ). Этот ключ в момент, когда в цилиндре должна образоваться искра для зажигания топлива, разрывает цепь питания катушки. Тогда энергия, запасенная в сердечнике катушки, вызывает рост ЭДС самоиндукции и напряжение на электроде свечи возрастает до тех пор, пока не наступит пробой искрового промежутка, или пока не сгорит катушка.

В блоках питания и аудиотехнике часто возникает необходимость убрать из сигнала лишние пульсации, шумы или частоты. Для этого используются фильтры разных конфигурации. Один из вариантов это LC, LR-фильтры. Благодаря препятствию роста тока и сопротивлению переменного тока, соответственно, возможно добиться поставленных целей.

Вред ЭДС самоиндукции приносит контактам выключателей, рубильников, розеток, автоматов и прочего. Вы могли заметить что, когда вытаскиваете вилку работающего пылесоса из розетки, очень часто заметна вспышка внутри неё. Это и есть сопротивление изменению тока в катушке (обмотке двигателя в данном случае).

В полупроводниковых ключах дело обстоит более критично – даже небольшая индуктивность в цепи может привести к их пробою, при достижении пиковых значений Uкэ или Uси. Для их защиты устанавливают снабберные цепи, на которых и рассеивается энергия индуктивных всплесков.

Заключение

Подведем итоги. Условиями возникновения ЭДС самоиндукции является: наличие индуктивности в цепи и изменение тока в нагрузке. Это может происходить как в работе, при смене режимов или возмущающих воздействиях, так и при коммутации приборов. Это явление может нанести вред контактам реле и пускателей, так как приводит к при размыкании индуктивных цепей, например, электродвигателей. Чтобы снизить негативное влияние большая часть коммутационной аппаратуры оснащается дугогасительными камерами.

В полезных целях явление ЭДС используется довольно часто, от фильтра для сглаживания пульсаций тока и фильтра частот в аудиоаппаратуре, до трансформаторов и высоковольтных катушек зажигания в автомобилях.

Надеемся, теперь вам стало понятно, что такое самоиндукция, как она проявляется и где ее можно использовать. Если возникли вопросы, задавайте их в комментариях под статьей!

Материалы

На данном уроке мы узнаем, как и кем было открыто явление самоиндукции, рассмотрим опыт, с помощью которого продемонстрируем это явление, определим, что самоиндукция - это частный случай электромагнитной индукции. В конце урока введем физическую величину, показывающую зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, т. е. индуктивность.

Генри изобретал плоские катушки из полосовой меди, с помощью которых добивался силовых эффектов, выраженных более ярко, чем при использовании проволочных соленоидов. Ученый заметил, что при нахождении в цепи мощной катушки ток в этой цепи достигает своего максимального значения гораздо медленнее, чем без катушки.

Рис. 2. Схема экспериментальной установки Д. Генри

На рис. 2 изображена электрическая схема экспериментальной установки, на основе которой можно продемонстрировать явление самоиндукции. Электрическая цепь состоит из двух параллельно соединенных лампочек, подключенных через ключ к источнику постоянного тока. Последовательно с одной из лампочек подключена катушка. После замыкания цепи видно, что лампочка, которая соединена последовательно с катушкой, загорается медленнее, чем вторая лампочка (рис. 3).

Рис. 3. Различный накал лампочек в момент включения цепи

При отключении источника лампочка, подключенная последовательно с катушкой, гаснет медленнее, чем вторая лампочка.

Почему лампочки гаснут не одновременно

При замыкании ключа (рис. 4) из-за возникновения ЭДС самоиндукции ток в лампочке с катушкой нарастает медленнее, поэтому эта лампочка загорается медленнее.

Рис. 4. Замыкание ключа

При размыкании ключа (рис. 5) возникающая ЭДС самоиндукции мешает убыванию тока. Поэтому ток еще некоторое время продолжает течь. Для существования тока нужен замкнутый контур. Такой контур в цепи есть, он содержит обе лампочки. Поэтому при размыкании цепи лампочки должны некоторое время светиться одинаково, и наблюдаемое запаздывание может быть вызвано другими причинами.

Рис. 5. Размыкание ключа

Рассмотрим процессы, происходящие в данной цепи при замыкании и размыкании ключа.

1. Замыкание ключа.

В цепи находится токопроводящий виток. Пусть ток в этом витке течет против часовой стрелки. Тогда магнитное поле будет направлено вверх (рис. 6).

Таким образом, виток оказывается в пространстве собственного магнитного поля. При возрастании тока виток окажется в пространстве изменяющегося магнитного поля собственного тока. Если ток возрастает, то созданный этим током магнитный поток также возрастает. Как известно, при возрастании магнитного потока, пронизывающего плоскость контура, в этом контуре возникает электродвижущая сила индукции и, как следствие, индукционный ток. По правилу Ленца, этот ток будет направлен таким образом, чтобы своим магнитным полем препятствовать изменению магнитного потока, пронизывающего плоскость контура.

То есть для рассматриваемого на рис. 6 витка индукционный ток должен быть направлен по часовой стрелке (рис. 7), тем самым препятствуя нарастанию собственного тока витка. Следовательно, при замыкании ключа ток в цепи возрастает не мгновенно благодаря тому, что в этой цепи возникает тормозящий индукционный ток, направленный в противоположную сторону.

2. Размыкание ключа

При размыкании ключа ток в цепи уменьшается, что приводит к уменьшению магнитного потока сквозь плоскость витка. Уменьшение магнитного потока приводит к появлению ЭДС индукции и индукционного тока. В этом случае индукционный ток направлен в ту же сторону, что и собственный ток витка. Это приводит к замедлению убывания собственного тока.

Вывод: при изменении тока в проводнике возникает электромагнитная индукция в этом же проводнике, что порождает индукционный ток, направленный таким образом, чтобы препятствовать любому изменению собственного тока в проводнике (рис. 8). В этом заключается суть явления самоиндукции. Самоиндукция - это частный случай электромагнитной индукции.

Рис. 8. Момент включения и выключения цепи

Формула для нахождения магнитной индукции прямого проводника с током:

где - магнитная индукция; - магнитная постоянная; - сила тока; - расстояние от проводника до точки.

Поток магнитной индукции через площадку равен:

где - площадь поверхности, которая пронизывается магнитным потоком.

Таким образом, поток магнитной индукции пропорционален величине тока в проводнике.

Для катушки, в которой - число витков, а - длина, индукция магнитного поля определяется следующим соотношением:

Магнитный поток, созданный катушкой с числом витков N , равен:

Подставив в данное выражение формулу индукции магнитного поля, получаем:

Отношение числа витков к длине катушки обозначим числом :

Получаем окончательное выражение для магнитного потока:

Из полученного соотношения видно, что значение потока зависит от величины тока и от геометрии катушки (радиус, длина, число витков). Величина, равная , называется индуктивностью:

Единицей измерения индуктивности является генри:

Следовательно, поток магнитной индукции, вызванный током в катушке, равен:

С учетом формулы для ЭДС индукции , получаем, что ЭДС самоиндукции равна произведению скорости изменения тока на индуктивность, взятому со знаком «-»:

Самоиндукция - это явление возникновения электромагнитной индукции в проводнике при изменении силы тока, протекающего сквозь этот проводник.

Электродвижущая сила самоиндукции прямо пропорциональна скорости изменения тока, протекающего сквозь проводник, взятой со знаком минус. Коэффициент пропорциональности называется индуктивностью , которая зависит от геометрических параметров проводника.

Проводник имеет индуктивность, равную 1 Гн, если при скорости изменения тока в проводнике, равной 1 А в секунду, в этом проводнике возникает электродвижущая сила самоиндукции, равная 1 В.

С явлением самоиндукции человек сталкивается ежедневно. Каждый раз, включая или выключая свет, мы тем самым замыкаем или размыкаем цепь, при этом возбуждая индукционные токи. Иногда эти токи могут достигать таких больших величин, что внутри выключателя проскакивает искра, которую мы можем увидеть.

Список литературы

  1. Мякишев Г.Я. Физика: Учеб. для 11 кл. общеобразоват. учреждений. - М.: Просвещение, 2010.
  2. Касьянов В.А. Физика. 11 кл.: Учеб. для общеобразоват. учреждений. - М.: Дрофа, 2005.
  3. Генденштейн Л.Э., Дик Ю.И., Физика 11. - М.: Мнемозина.
  1. Интернет-портал Myshared.ru ().
  2. Интернет-портал Physics.ru ().
  3. Интернет-портал Festival.1september.ru ().

Домашнее задание

  1. Вопросы в конце параграфа 15 (стр. 45) - Мякишев Г.Я. Физика 11 (см. список рекомендованной литературы)
  2. Индуктивность какого проводника равна 1 Генри?