Что такое адроны в физике. Адроны. Элементарные частицы. Барионы и мезоны. Классификация и свойства. Адроны - бесцветные образования цветных кварков

АДРОНЫ

АДРОНЫ

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

АДРОНЫ

(от греч. hadros - большой, сильный; термин предложен Л. Б. Окунем в 1967) - частицы, участвующие в сильном взаимодействии. К А. относятся все барионы (в т. ч. - протон и ) и мезоны. А. обладают сохраняющимися в процессах сильного взаимодействия квантовыми числами: странностью, очарованием, красотой и др. Близкие по массе А., имеющие одинаковые значения указанных квантовых чисел, а также барионного числа и спина могут быть объединены в изотопические мулътиплеты, включающие в себя А. с разл. электрич. зарядами. Изо-топич. , отличающиеся только значением странности, могут быть, в свою очередь, объединены в более обширные группы частиц - супермультиплеты группы SU(3).

В свободном состоянии все А. (за исключением, возможно, протона) нестабильны. Те из них, к-рые распадаются благодаря сильному взаимодействию, имеют характерное порядка 10 -22 -10 -23 с и наз. резонансами (исключение - т. н. векторные мезоны со скрытым очарованием: или со скрытой красотой: , время жизни к-рых 10 -20 с). А., распадающиеся за счёт слабого или эл.-магн. взаимодействия, условно наз. стабильными, поскольку их время жизни на много порядков больше характерного времени сильного взаимодействия. К "стабильным" (в этом смысле) А., кроме нуклонов, относятся гипероны , барион , мезоны , очарованные мезоны D, F и др.

А. представляют собой составные системы. Большинство известных барионов состоит из трёх кварков, а мезоны - из кварка и антикварка (хотя возможны , имеющие в своём составе дополнит. пары кварк-антикварк, напр. мезоны из 2 кварков и 2 антикварков). Значения странности, очарования и др. подобных квантовых чисел А. определяются числом входящих в их состав странных ( я), очарованных ( с), красивых (6) и др. возможных типов (ароматов) кварков и соответствующих антикварков.

Лит. см. при ст. Сильное взаимодействие, Элементарные частицы . С. С. Герштейн.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "АДРОНЫ" в других словарях:

    Современная энциклопедия

    Адроны - (от греческого hadros большой, сильный), общее название элементарных частиц, участвующих в сильных взаимодействиях (смотри Взаимодействия фундаментальные). Адронами являются протоны, нейтроны, мезоны и др. Адроны состоят из кварков. Термин введен … Иллюстрированный энциклопедический словарь

    Элементарные частицы, участвующие в сильном взаимодействии (барионы и мезоны, включая все резонансы) … Большой Энциклопедический словарь

    АДРОНЫ - обширный класс «тяжелых» элементарных (см.), участвующих во всех взаимодействиях, в т. ч. и в сильном (см.). А. сложные частицы вещества, которые напоминают ядра атомов, где вместо протонов и нейтронов содержатся (см.). К А. относятся (см.),… … Большая политехническая энциклопедия

    Элементарные частицы, участвующие в сильном взаимодействии (барионы и мезоны, включая все резонансы). * * * АДРОНЫ АДРОНЫ, элементарные частицы, участвующие в сильном взаимодействии (см. СИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ) (барионы (см. БАРИОНЫ) и мезоны (см … Энциклопедический словарь

    - (гр. adros сильный) общее название амментарных частиц (барионов, включая все резонансы, и мезонов), подверженных сильному взаимодействию (это взаимодействие ответственно за устойчивость атомных ядер). Новый словарь иностранных слов. by EdwART,… … Словарь иностранных слов русского языка

    адроны - hadronai statusas T sritis chemija apibrėžtis Stipriąja sąveika pasižyminčių elementariųjų dalelių klasė. atitikmenys: angl. hadrons rus. адроны … Chemijos terminų aiškinamasis žodynas

    Общее наименование для элементарных частиц, участвующих в сильных взаимодействиях (См. Сильные взаимодействия). В класс А. входят протон, нейтрон, гипероны, мезоны, а также все резонансные частицы (см. Элементарные частицы) … Большая советская энциклопедия

    - (от греч. hadros большой, сильный) класс элементарных частиц, участвующих в сильном взаимодействии, а также в слабом взаимодействии и в электромагнитном взаимодействии. К А. относят все барионы и мезоны, включая резанонсы, и соответствующие им… … Большой энциклопедический политехнический словарь

    Элементарные частицы, участвующие в сильном взаимодействии, к рое приводит к установлению прочной связи между нуклонами в ядрах (радиус взаимодействия ок. 10 13 см). К адронам относятся барионы и мезоны, включая резонансы … Естествознание. Энциклопедический словарь

Книги

  • Комплект таблиц. Физика. Физика высоких энергий (12 таблиц) , . Учебный альбом из 12 листов. Артикул - 5-8675-012. Состав и размеры ядра. Энергия связи нуклонов в ядре. Естественная радиоактивность. Закон радиоактивного распада. Цепнаяядерная реакция.…

Адроны - общее название для частиц, участвующих в сильных взаимодействиях. Название происходит от греческого слова, означающего «сильный, крупный». Все адроны делятся на две большие группы - мезоны и барионы.

Барионы (от греческого слова, означающего «тяжелый») - это адроны с полуцелым спином (см. Спин). Самые известные барионы - протон и нейтрон. К барионам принадлежит также ряд частиц с квантовым числом, названным когда-то странностью.

Единицей странности обладают барион лямбда и семейство барионов сигма (). Индексы +, - и 0 указывают на знак электрического заряда или нейтральность частицы. Двумя единицами странности обладают барионы ион ( и ). Барион имеет странность, равную трем. Массы перечисленных барионов примерно в полтора раза больше массы протона, а их характерное время жизни составляет около с. Напомним, что протон практически стабилен, а нейтрон живет более 15 мин. Казалось бы, более тяжелые барионы очень недолговечны, но по масштабам микромира это не так. Такая частица, даже двигаясь относительно медленно, со скоростью, скажем, равной 10% от световой, успевает пройти путь в несколько миллиметров и оставить свой след в детекторе элементарных частиц (см. Детекторы ядерных излучений). Одним из свойств барионов, отличающих их от других видов частиц, можно считать наличие у них сохраняющегося барионного заряда. Эта величина введена для описания опытного факта постоянства во всех известных процессах разности между числом барионов и антибарионов (см. Четность, Пептоны, Протон).

Мезоны - адроны с целым спином. Название произошло от греческого слова, означающего «средний», поскольку массы первых открытых мезонов имели промежуточные значения между массами протона и электрона. Барионный заряд мезонов равен нулю. Легчайшие из мезонов - пионы, или пи-мезоны и . Их массы примерно в 6-7 раз меньше массы протона. Более массивны странные мезоны - каоны и : их массы почти в два раза меньше массы протона. Характерное время жизни этих мезонов - с.

Почти все адроны имеют античастицы. Так, барион сигма-минус имеет античастицу антисигма-плюс , которая отлична от . То же самое можно сказать и о других барионах. С мезонами дело обстоит несколько иначе: отрицательный пион - античастица положительного пиона, а нейтральный пион античастицы вбобще не имеет, поскольку является античастицей сам себе. В то же время нейтральный каон имеет античастицу . Эти факты получают объяснение в кварковой модели адронов (см. Кварки).

Мир адронов огромен - он включает более 350 частиц. Большинство их очень нестабильны: они распадаются на более легкие адроны за время порядка . Это - характерное время сильных взаимодействий; за столь короткий интервал даже свет успевает пройти расстояние, равное всего лишь радиусу протона ( см). Ясно, что столь короткоживущие частицы не могут оставить следов в детекторах.

Обычно их рождение обнаруживают по косвенным признакам. Например, изучают реакцию аннигиляции электронов и позитронов с последующим рождением адронов. Изменяя энергию столкновения электронов и позитронов, обнаруживают, что при каком-то значении энергии выход адронов вдруг резко увеличивается. Данный факт можно объяснить тем, что в промежуточном состоянии родилась частица, масса которой равна соответствующей энергии (с точностью до множителя ). Эта частица мгновенно распадется на другие адроны, и единственным следом ее появления останется пик на графике зависимости вероятности рождения адронов от энергии столкновения.

Такие короткоживущие частицы называют резонансами. Большинство барионов и мезонов - резонансы. Они не оставляют «автографов» в камерах и на фотографиях, и все же физикам удается изучать их свойства: определять массу, время жизни, спин, четность, способы распада и т. п.

По современным представлениям адроны не являются истинно элементарными частицами. Они имеют конечные размеры и сложную структуру. Барионы состоят из трех кварков. Соответственно антибарион состоит из трех антикварков и всегда отличен от бариона. Мезоны построены из кварка и антикварка. Ясно, что мезоны, в состав которых входят пары из кварков и антикварков одного сорта, не будут иметь античастиц. Кварки удерживаются внутри адронов глюонным полем (см. Сильные взаимодействия). В принципе теория допускает существование других адронов, построенных из большего числа кварков или, наоборот, из одного глюонного поля. В последнее время появились некоторые экспериментальные данные о возможном существовании таких гипотетических частиц.

Динамическая теория кварков, описывающая их взаимодействия, стала развиваться относительно недавно. Первоначально кварковая модель была предложена для «наведения порядка» в слишком многочисленном семействе адронов. Эта модель включала кварки трех видов, или, как принято говорить, ароматов. С помощью кварков удалось навести порядок в многочисленном семействе адронов, распределив их в группы частиц, называемые мультиплетами. Частицы одного мультиплета имеют близкие массы, но не только это послужило основой их классификации; кроме опытных данных в этом случае использовали специальный математический аппарат теории групп. В дальнейшем оказалось, что трех кварковых ароматов недостаточно для описания всех адронов. В 1974 г. были открыты так называемые пси-мезоны, состоящие из кварка и антикварка нового вида . Этот аромат был назван очарованием. Новый очарованный кварк с оказался гораздо тяжелее своих "собратьев": легчайшая из пси-частиц - мезон имеет массу 3097 МэВ, т. е. в 3 раза тяжелее протона. Время ее жизни около . Было открыто целое семейство пси-мезонов с тем же кварковым составом , но находящихся в возбужденных состояниях и вследствие этого имеющих большие массы. Было очевидно, что должны существовать и связанные состояния с-кварка с кварками других ароматов. В такого рода частицах «очарование» с-кварка не будет компенсироваться «антиочарованием» -кварка, как это происходит в пси-мезонах. Поэтому такие частицы получили название очарованных мезонов.

АДРОНЫ (от греческого αδρ?ς - большой, сильный), частицы, участвующие в сильных взаимодействиях. К адронам относятся мезоны и барионы (в том числе протон и нейтрон). Адроны следует отличать от атомных ядер, которые состоят из двух и большего числа нуклонов.

Адроны не элементарны, они состоят из кварков. Наиболее хорошо изученные барионы состоят из трёх кварков, а мезоны - из кварка и антикварка, «склеенных» глюонами. Все известные адроны состоят из шести типов (или, как часто говорят, ароматов) кварков, обозначаемых буквами u, d, s, с, b, t. Нуклоны состоят из самых лёгких кварков: u и d (так, протон р и нейтрон n представляются в виде р = uud, n = ddu). Барионы, содержащие более тяжёлые кварки (s, с, b), называют гиперонами. Взаимодействие глюонов с кварками и глюонов с глюонами обусловлено наличием у кварков, антикварков и глюонов специфических зарядов, называемых цветными зарядами (или цветом). Теория, описывающая эти взаимодействия, называется квантовой хромодинамикой (КХД).

Кварк каждого аромата существует в виде трёх цветовых разновидностей (красный, жёлтый, синий). Цвета антикварков дополнительны (оранжевый, зелёный, фиолетовый). Каждый из восьми глюонов несёт двойной цветовой заряд, например, красно-оранжевый, жёлто-синий и так далее. Названия цветов условны, но приведённый выше выбор в соответствии с принятой в оптике терминологией удобен тем, что при этом адроны (не обладающие цветовыми зарядами) естественно называть бесцветными или белыми частицами. Цветные частицы кварки, антикварки, глюоны - как бы заключены внутри белых адронов. Это явление называют конфайнментом. Последовательная теория конфайнмента в рамках КХД пока не построена. Следствием конфайнмента является то, что в столкновениях адронов высоких энергий друг с другом или с другими частицами - фотонами или лептонами - рождаются адроны, но не свободные кварки и глюоны.

На ускорителях частиц высоких энергий ведутся поиски так называемых экзотических адронов, структура которых более сложна, чем три кварка в случае барионов и кварк-антикварк в случае мезонов. Экзотические мезоны, состоящие только из глюонов, называются глюболами.

Адроны, содержащие в дополнение к минимальному числу кварков ещё и глюон, называются гибридами. Так как электрический заряд глюонов равен нулю, и они не обладают ароматом, глюболы должны быть электрически нейтральны, а гибриды должны иметь тот же аромат, что и соответствующий адрон, не содержащий дополнительного глюона. Вместо дополнительного глюона экзотический адрон может содержать пару кварк-антикварк (например, uu или ds, где чёрточка над символом кварка означает антикварк). В первом случае аромат экзотического адрона совпадает с ароматом основного, во втором отличается от него.

Исторически первыми изученными адронами были нуклоны (протон и нейтрон) и самые лёгкие из мезонов - пи-мезоны, открытые в 1947 году. В 1950-х годах открыты странные частицы. Их изучение и систематизация привели в 1964 году к созданию кварковой модели адронов, а s-кварк, входящий в состав странных частиц, получил название странного кварка. В 1974 году открыт первый мезон, содержащий очарованные кварк с и антикварк с (смотри Очарованные частицы). Такие мезоны названы мезонами со скрытым очарованием (чармом). Вслед за этим открыты мезоны с явным очарованием, типа eu или cd. В 1976 году открыты первые мезоны типа bb, а затем мезоны типа bu, bd, bs и др. В 1984 году на протон-антипротонном коллайдере рождены пары самых тяжёлых кварков t и t. Масса t-кварка около 175 ГэВ, его время жизни настолько мало (порядка 10 -24 с), что он не успевает образовать соответствующие адроны ни с t-кварком, ни с более лёгкими кварками, сопровождающими его рождение.

Лит.: Окунь Л. Б. Физика элементарных частиц. 2-е изд. М., 1988.

Адронами называют частицы, участвующие в сильном взаимодействии. Все адроны - составные частицы, они состоят из кварков или антикварков. Мезоны - это адроны, состоящие из кварк-антикварковой пары, барионы - это адроны, состоящие из трех кварков (соответственно, антибарионы состоят их трех антикварков).

И уже в этом определении, таком простом и коротком, скрыто несколько тонкостей, про которые можно говорить очень долго. Мы пускаться в эти разговоры не будем, а упомянем только три самых важных момента.

Составные кипричики

Обычно, когда говорят, что какой-то предмет состоит из частей, то предполагают, что эти части можно, по крайней мере в принципе, отделить друг от друга и предъявить каждую из них по отдельности. Для кварков это предположение не работает. Да, это не очень интуитивное свойство, его трудно совместить с повседневным опытом, но дела в кварковом мире обстоят именно так.

Физики видят в многочисленных экспериментах, что протоны, нейтроны и другие адроны действительно состоят из отдельных «комочков материи», которые, хоть и движутся друг относительно друга, но навеки скреплены глюонными силами. Разделить протон на отдельные кварки, отделить один кварк от других не получится. Как только вы попытаетесь это сделать, приложите достаточную силу для вытягивания одного кварка из протона, так сразу же глюонное поле породит новую кварк-антикварковую пару. Вместо вытягивания кварка вы извлечете из протона мезон, а протон так и останется протоном (рис. 1). Этот процесс называется адронизация - «превращение в адроны».

Такое поведение кварков называют конфайнментом - «пленением» кварков внутри адронов. Получается так вовсе не из-за самих кварков, а из-за сил, которые между ними действуют. Связывающее их силовое поле не просто сильное, оно очень особенное, непохожее на электромагнитные силы. Это силовое поле способно чувствовать само себя, способно взаимодействовать с собой и от этого усиливаться. В результате получается, что если этому силовому полю предоставить всё пространство, то его энергия будет неограниченно возрастать. Это очень невыгодно с точки зрения энергии; гораздо выгоднее для этого поля будет породить много кварк-антикварковых пар, которые замкнут на себя это поле. И вот тогда оно будет спрятано в отдельных кварковых или антикварковых комбинациях, а на всё пространство распространяться не будет.

На жаргоне физиков то свойство, которое позволяет кваркам чувствовать глюонное поле, называется цвет (он, конечно, не имеет никакого отношение к оптическим цветам, это просто приятное название для новой величины). Цветов у кварков три, и еще три противоположных цвета у антикварков. А адронами являются не произвольные, а именно такие комбинации, в которых все цвета «сокращаются», или, как говорят физики, бесцветные комбинации (то есть три кварка с тремя разными цветами или кварк и антикварк с противоположным цветом).

Конечно, это всё - очень упрощенное описание; реальное положение дел гораздо сложнее. Более того, явление конфайнмента до сих пор не понято на достаточном уровне математической строгости. Математический институт Клэя даже назначил премию в миллион долларов за решение этой задачи. Однако на описательном уровне явление конфайнмента считается установленным.

Наивная кварковая модель

Описанная выше схема, по которой кварки группируются по двое и по трое и становятся бесцветными адронами, называется наивной кварковой моделью . Эта модель не объясняет, почему все адроны объединяются только по двое и по трое. Можно построить и другие бесцветные комбинации кварков и антикварков, создать многокварковые адроны, но они почему-то на опыте не встречаются.

А точнее, они не встречались до недавнего момента. Начиная с середины 2000-х годов стали появляться надежные экспериментальные данные, что некоторые адроны не вписываются в простую схему наивной кварковой модели. Такие адроны называются экзотическими . Правда, количество известных на сегодня экзотических адронов очень невелико, всего несколько штук против нескольких сотен обычных адронов - и причем все они мезоны; подтвержденных данных по пентакваркам и другим экзотическим барионам пока нет.

Получается, что природа всё же выходит за рамки простейшей схемы, но очень уж неохотно. Почему так происходит и что вообще представляют из себя экзотические адроны, пока что остается предметом активных исследований.

Состав - понятие относительное!

Даже в слове «состоит » скрыто немало тонкостей. Дело в том, что утверждение «протон состоит из трех кварков » хорошо работает только для неподвижного или медленно движущегося протона. Если же протон летит со скоростью, близкой к скорости света, то его состав кардинально меняется: в нем словно «нарождаются» многочисленные кварки, антикварки и глюоны (они совокупно называются партоны ), которые летят вперед одним компактным облаком и, собственно, представляют собой протон. В столкновении таких быстролетящих протонов реально сталкивается не вся толпа этих отдельных частиц, а лишь по одному партону (изредка - больше); см. рис. 2.

Кварки и их свойства

Сейчас известно шесть сортов (на физическом жаргоне - ароматов ) кварков. Они обозначаются буквами u, d, s, c, b, t и попарно объединяются в три поколения кварков (рис. 3). Из них только первые пять участвуют в образовании адронов. Топ-кварк t настолько тяжел, что распадается исключительно быстро и попросту не успевает образовать адроны. Известно также, что других кварков не существует; по крайней мере, не существует других легких кварков, которые могли бы образовывать настоящие адроны.

Пройдемся кратко по всем пяти «адронообразующим» кваркам.

  • Легкие кварки u (up, верхний) и d (down, нижний). Легкие кварки - самые распространенные в природе. Именно из них состоят протоны (uud), нейтроны (udd), переносчики ядерных сил, пи-мезоны. Обычно пишут, что массы u- и d-кварков составляют несколько МэВ, но это число для адронной физики почти бесполезно. Дело в том, что массы адронов получаются не только из масс кварков, но еще и из-за конфайнмента, который дает вклад в общую массу адрона от 100 до нескольких сотен МэВ.
  • Странный кварк s. Название «странный» возникло исторически, когда содержащие его частицы (странные адроны) только-только стали появляться в экспериментальных данных и вели себя «как-то не так» по сравнению с известными адронами. Странные адроны уже давно не считаются чем-то необычным, это вполне «рутинные» частицы в современных экспериментах.
  • Очарованный кварк c. Такое симпатичное название - просто причуда физического жаргона, отчасти скрашивающая сухие тексты по адронной физике. Содержащие этот кварк частицы (очарованные адроны) тяжелее своих легких собратьев (к их массе добавляется примерно 1,5 ГэВ на каждый c-кварк) и живут недолго, порядка одной пикосекунды (в системе покоя частицы). Тем не менее это позволяет им отлететь от точки рождения на расстояния порядка миллиметра, что надежно регистрируется детекторами . Такое разделение событий рождения и распада позволяет хорошо идентифицировать такие адроны.
  • Прелестный кварк b еще тяжелее, его масса около 5 ГэВ, однако время жизни его даже больше, чем у c-кварка, - около 1,5 пс. Из-за того что масса b-кварка намного больше адронного масштаба масс (несколько сотен МэВ), становится очень удобно описывать прелестные адроны как связанную систему тяжелого и легкого кварка; многие успехи в теоретическом описании прелестных адронов связаны именно с этим простым фактом.

Классификация адронов

Общепринятые обозначения

Адроны могут содержать любые комбинации этих пяти кварков, которые, к тому же, могут еще и по-разному двигаться друг вокруг друга наподобие того, как электроны могут по-разному двигаться вокруг ядра. Поэтому даже из небольшого числа кварков можно, в принципе, составить неограниченное количество адронов. Конечно, как открыть их эксприментально - это отдельный вопрос.

Мезоны и барионы с разным кварковым составом обозначаются разными прописными буквами; при этом мезоны обычно обозначаются латинскими буквами (K-мезоны, D-мезоны, B-мезоны), а барионы - греческими (Λ, Σ, Ξ, Ω). Исключение составляют исторически сложившиеся названия: π-мезоны, ρ-мезоны, p, n и т. п. Внутри одного семейства частицы обозначаются одинаковой буквой, но к ней либо приписываются индексы, либо в скобках добавляется масса. Например, «обычный» B-мезон c кварковым составом (d-анти-b) так и обозначается: B, но мезон с составом s-анти-b обозначается B s и называется странным прелестным мезоном. Обычный Λ-барион с кварковым составом uds обозначается просто Λ, а возбужденное состояние тех же кварков с общей массой 1519,5 МэВ обозначается Λ(1520).

Особый класс составляют мезоны с кварком и антикварком одинакового аромата, в особенности c-анти-c и b-анти-b. Такие состояния называются кваркониями (и конкретно - «чармонием» в случае c-анти-c и «боттомонием» в случае b-анти-b), по аналогии с позитронием, который состоит из электрона и его античастицы, позитрона. В семействе кваркониев есть много состояний со слегка отличающимися массами, которые могут переходить друг в друга с излучением фотонов, по аналогии с переходами электронов между уровнями энергии в возбужденных атомах.